Publish Time: 2022-04-18 Origin: Site
Material delivery method
In a single-screw extruder, there is friction drag in the solids conveying section and viscous drag in the melt conveying section. The friction properties of the solid material and the viscosity of the molten material determine the conveying behavior. If some materials have poor friction properties, if the feeding problem is not solved, it will be difficult to feed the materials into the single-screw extruder. In twin-screw extruders, especially intermeshing twin-screw extruders, the conveying of materials is to some extent forward displacement transmission, and the degree of forward displacement depends on the relationship between the flight of one screw and that of the other screw. the proximity of the relative screw grooves. The screw geometry of the closely intermeshing counter-rotating extruder results in a high degree of positive displacement delivery characteristics.
Material flow velocity field
At present, the flow velocity distribution of the material in the single-screw extruder has been described quite clearly, while the flow velocity distribution of the material in the twin-screw extruder is quite complicated and difficult to describe. Many researchers just do not consider the material flow in the meshing area to analyze the flow velocity field of the material, but these analysis results are very different from the actual situation. Because the mixing characteristics and overall behavior of a twin-screw extruder are primarily determined by the leakage flow that occurs in the intermeshing zone, the flow situation in the intermeshing zone is quite complex. The complex flow spectrum of the material in the twin-screw extruder shows macroscopic advantages that the single-screw extruder cannot match, such as sufficient mixing, good heat transfer, large melting capacity, strong exhaust capacity and good temperature control of the material, etc.